Overcoming Catastrophic Interference in Connectionist Networks Using Gram-Schmidt Orthogonalization
نویسندگان
چکیده
Connectionist models of memory storage have been studied for many years, and aim to provide insight into potential mechanisms of memory storage by the brain. A problem faced by these systems is that as the number of items to be stored increases across a finite set of neurons/synapses, the cumulative changes in synaptic weight eventually lead to a sudden and dramatic loss of the stored information (catastrophic interference, CI) as the previous changes in synaptic weight are effectively lost. This effect does not occur in the brain, where information loss is gradual. Various attempts have been made to overcome the effects of CI, but these generally use schemes that impose restrictions on the system or its inputs rather than allowing the system to intrinsically cope with increasing storage demands. We show here that catastrophic interference occurs as a result of interference among patterns that lead to catastrophic effects when the number of patterns stored exceeds a critical limit. However, when Gram-Schmidt orthogonalization is combined with the Hebb-Hopfield model, the model attains the ability to eliminate CI. This approach differs from previous orthogonalisation schemes used in connectionist networks which essentially reflect sparse coding of the input. Here CI is avoided in a network of a fixed size without setting limits on the rate or number of patterns encoded, and without separating encoding and retrieval, thus offering the advantage of allowing associations between incoming and stored patterns. PACS Nos.: 87.10.+e, 87.18.Bb, 87.18.Sn, 87.19.La.
منابع مشابه
Catastrophic Interference in Connectionist Networks: Can It Be Predicted, Can It Be Prevented?
Catastrophic forgetting occurs when connectionist networks learn new information, and by so doing, forget all previously learned information. This workshop focused primarily on the causes of catastrophic interference, the techniques that have been developed to reduce it, the effect of these techniques on the networks' ability to generalize, and the degree to which prediction of catastrophic for...
متن کاملSimplified Capacity-Based User Scheduling Algorithm for Multiuser MIMO Systems with Block Diagonalization
In multiple-input multiple-output (MIMO) systems, the multiuser MIMO (MU-MIMO) systems have the potential to provide higher channel capacity owing to multiuser and spatial diversity. Block diagonalization (BD) is one of the techniques to realize MU-MIMO systems, where multiuser interference can be completely cancelled and therefore several users can be supported simultaneously. When the number ...
متن کاملCatastrophic interference in connectionist networks
Introduction Catastrophic forgetting vs. normal forgetting Measures of catastrophic interference Solutions to the problem Rehearsal and pseudorehearsal Other techniques for alleviating catastrophic forgetting in neural networks Summary
متن کاملA New Approach for Solving Volterra Integral Equations Using The Reproducing Kernel Method
This paper is concerned with a technique for solving Volterra integral equations in the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernel method, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series.An iterative method is given to obtain the approximate solution.The conver...
متن کاملUsing Semi-Distributed Representations to Overcome Catastrophic Forgetting in Connectionist Networks
In connectionist networks, newly-learned information destroys previously-learned information unless the network is continually retrained on the old information. This behavior, known as catastrophic forgetting, is unacceptable both for practical purposes and as a model of mind. This paper advances the claim that catastrophic forgetting is a direct consequence of the overlap of the system’s distr...
متن کامل